XXIII International Baldin Seminar on High Energy Physics Problems Relativistic Nuclear Physics and Quantum Chromodynamics JINR, Dubna, Russia, 2016

Heavy flavor measurements at the STAR experiment

Pavol Federič

for the STAR collaboration

Nuclear Physics Institute of the Czech Academy of Sciences

Outline

- Physics motivation
- STAR with Heavy Flavor Tracker and Muon Telescope Detector
- Open heavy flavor measurements
- Quarkonium measurements
- Outlook
- Summary

Open heavy flavor in the QGP

Heavy quarks (c, b):

- Produced early in heavy-ion collisions at RHIC in initial hard scattering → exposed to the entire evolution of the hot nuclear matter → used as a probe to study properties of the QGP medium
- Compare with light hadrons to disentangle energy loss mechanisms: radiative vs. collisional
- Compare yields of different charm hadrons to study the hadronization process

STAR: PRD 86 (2012) 072013, NPA 931 (2014) 520 CDF: PRL 91 (2003) 241804; ALICE: JHEP01 (2012) 128 FONLL: PRL 95 (2005) 122001

Quarkonia in the QGP

 Compare A+A with p+p collisions: study dissociation due to color screening, regeneration from uncorrelated quarks and cold nuclear matter (CNM) effects

- Charmonia: J/ψ , ψ' , χ_C
- Bottomonia:
 Y(1S), Y(2S), Y(3S), χ_R

Sequential melting:
 different states dissociate at different temperatures – QGP
 thermometer

Illustration: A. Mocsy, EPJC61 (2009) 705

RHIC

The Solenoidal Tracker At RHIC (STAR) detector

Time Projection Chamber (TPC):

- tracking
- particle identification via dE/dx

Time Of Flight (TOF):

• particle identification via $1/\beta$

Heavy Flavor Tracker (HFT):

- tracking
- secondary vertex

Muon Telescope Detector (MTD):

- triggering
- muon identification

TPC/TOF/HFT: full azimuthal coverage at mid-rapidity ($|\eta|$ <1)

The Solenoidal Tracker At RHIC (STAR) detector

Time Projection Chamber (TPC):

- tracking
- particle identification via dE/dx

Time Of Flight (TOF):

nartials identification via 1/R

Excellent identification of long-lived hadrons and electrons in TPC and TOF

STAR with Heavy Flavor Tracker

Heavy Flavor Tracker (HFT):

- SSD Silicon Strip Detector
- IST Intermediate Silicon Tracker
- PXL Pixel Detector (MAPS, 356M pixels of silicon, 20x20 μm², 0.4% X₀, air-cooled)

Acceptance coverage:

$$-1 < \eta < 1$$

 $0 < \phi < 2\pi$

Kaon track pointing resolution exceeds the requirement < 55 μm at p_T = 750 MeV/c Pointing resolution with Al-cables \sim 45 μm

Topological reconstruction with HFT

- Secondary vertex reconstruction with HFT → full kinematic reconstruction of charmed hadron
- Combinatorial background suppressed by 4 orders of magnitude
- Highly improved signal-to-background ratio

	w/o HFT	with HFT	
year	2010+2011	2014	
Number of events analyzed	1.1G	780M	
significance per billion events	13	51	

$D^0 R_{AA}$

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{AuAu}}{dN/dy^{pp}}$$

- High p_T: significant suppression in central Au+Au collisions → strong charm-medium interaction
- R_{AA}(D⁰) > 1 at p_T ~ 1.5 GeV/c → indication of charm coalescence with bulk
- Similar suppression for light partons and charm quarks at high p_T

STAR: PRL 113 (2014) 142301 PLB 655 (2007) 104

$\mathbf{D}^0 \mathbf{v}_2$

- D^0 azimuthal anisotropy significantly above zero for $p_T > 2 \text{ GeV/c}$
- Data favor the model with charm quark diffusion in the medium

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\phi - \psi_{r})) \right)$$

Theory: arXiv:1506.03981 (2015) & private comm.

$\mathbf{D}^0 \mathbf{v}_2$

- Systematically lower than results for light hadrons in 0-80% centrality bin.
- Suggests charm quarks are not fully thermalized with the medium?
 - More statistics will enable a comparison in finer centrality bins.

STAR:PRC 77 (2008) 54901 PRL 116 (2016) 62301

Comparison to models

- Models can describe both R_{AA} and v₂
- **TAMU**: non-perturbative T-Matrix approach: $(2\pi T)D = 2 \sim 10$
- **SUBATECH**: pQCD + Hard Thermal Loops for resummation: $(2\pi T)D = 2 4$
- **DUKE**: Langevin simulation with transport properties tuned to LHC data: $(2\pi T)D = 7$

Theory: PRC 92(2015) 024907 arXiv:1506.03981 (2015) & private comm. STAR 2010/11: PRL 113 (2014)

142301

Diffusion coefficient $(2\pi T)D$

- The diffusion coefficient extracted from models as a function of T/T_c and the inferred range $(2\pi T)D = 2$ ~ 10 from the STAR data
- The extracted values are consistent with the lattice QCD calculation

STAR Muon Telescope Detector (MTD)

- Designed for muon triggering and identification with precise timing: $\sigma \sim 100$ ps for $p_T > 1.2$ GeV/c
- Multi-gap resistive plate chambers (MRPC), similar technology as used for Time of Flight (TOF) detector
- Placed behind magnet, which is used as a hadron absorber
- Geometrical acceptance: 45% in azimuth within $|\eta| < 0.5$

$J/\psi R_{AA}$ in Au+Au collisons

- Consistent with di-electron channel results over entire p_T for all centralities
- Distinct rising R_{AA} with p_T for 20-40% and 40-60% centrality bins

Di-electron: STAR PLB 722 (2013) 55 STAR PRC 90, 024906 (2014)

$J/\psi R_{AA}$ vs. centrality

- J/ψ R_{ΔA} for $p_T > 0$ GeV/c: smaller at RHIC than LHC \rightarrow more recombination at LHC
- J/ψ R_{AA} for p_T > 5 GeV/c: larger at RHIC than LHC \rightarrow stronger dissociation at LHC
- Transport models with both regeneration and dissociation can qualitatively describe the data

ALICE: PLB 734 (2014) 314 CMS: JHEP 05 (2012) 063

PHENIX: PRL 98 (2007) 232301

Transport models:

Model I at RHIC: PLB 678 (2009) 27 Model I at LHC: PRC89 (2014) 054911 Model II at RHIC: PRC 82 (2010) 064905

Model II at LHC: NPA 859 (2011) 114

Y analysis with MTD

World-wide: PRC 88 (2013) 067901 CMS: PRL 109 (2012) 222301 CMS: JHEP 04 (2014) 103

- Sign of excited Y(2S+3S) states from the di-muon channel
 - Challenging in di-electron channel due to Bremsstrahlung
- Hint of less Y(2S+3S) dissociation at RHIC than LHC

Outlook

- Improved HFT tracking efficiency after PXL decoding issue has been discovered and resolved → factor 2-4 improvement in D⁰ significance
- Preliminary results are consistent with the results obtained with the available reprocessed sample
- Run 16:
 - Full aluminum cables for inner layer of PXL: factor 2-3 further improvement for *D*⁰ significance at 1 GeV/c
 - Equivalent MTD data collected as in Run 14
 - Precision heavy flavor measurements

	Year	System	MTD di-muon sampled luminosity	HFT MB events
	Run 14	Au+Au	14.3 nb ⁻¹	1.2 B
	Run 15	p+p	122.1 pb ⁻¹	1 B
		p+Au	0.41 pb ⁻¹	0.6 B
	Run 16	Au+Au	12.8 nb ⁻¹	~2.0 B
		d+Au		~0.3 B

Summary

- STAR HFT and MTD deliver first set of heavy flavor results with Run14 dataset
- Open heavy flavor measurements with HFT:
 - First implementation of MAPS technology in a collider experiment
 - Charm quarks interact strongly with the QGP medium
 - Charm quarks flow with the medium
- Quarkonium measurements with MTD:
 - $J/\psi R_{AA}$ obtained in di-muon channel consistent with di-electron results
 - Distinct rising R_{AA} with p_T for 20-60%
 - At high p_T , $R_{AA} < 1 \rightarrow$ dissociation in effect
- Outlook:
 - New HFT reconstruction software will increase D⁰ significance by a factor of 2-4
 - More exciting results to come. Factor 4(2) Au+Au data on tape for HFT(MTD) for open heavy flavor (D_s , Λ_c , B, ...) and quarkonia (J/ ψ and Y) from Run14+16 datasets

Backup

Topological reconstruction with HFT – three body decays

